US009110940B2

a2z United States Patent (10) Patent No.: US 9,110,940 B2
Markus 45) Date of Patent: Aug. 18, 2015
(54) SUPPORTING TRANSACTIONS IN g’ggg’?; é gé . }ggggg garlnford_et al~al 071202
K s olenstein et al.
DISTRIBUTED ENVIRONMENTS USING A 6725242 B2 42004 Gardner
LOCAL COPY OF REMOTE TRANSACTION 6816873 B2 11/2004 Cotner ct al.
DATA AND OPTIMISTIC LOCKING 7,702,658 B2* 4/2010 Dunncccoovienns 707/999.201
7,933,881 B2 4/2011 Richey et al.
. : 7,991,971 B2 8/2011 Groffet al.
(75) Inventor: Mircea Markus, London (GB) 810,852 B2* 72012 Lind et al oo 714/15
. . 8,266,122 Bl 9/2012 Newcombe et al.
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 2007/0078911 Al* 4/2007 Lee etal. oo 707/204
2008/0052322 Al 2/2008 Gusciora
(*) Notice: Subject to any disclaimer, the term of this 2008/0154980 ALl* 6/2008 Lorenzetal. ... 707/202
patent s extended or adjusted under 35 S CO0TETH Lo 122000 Hoffmann tai. 707204
oImann € PR TPPON
US.C. 154(b) by 269 days. 2010/0017572 Al* 1/2010 Kokaetal. T11/159
2010/0191884 Al* 7/2010 Holenstein et al. 710/200
(21) Appl. No.: 13/408,249 2012/0016849 Al 1/2012 Garrod et al.
2012/0167098 Al* 6/2012 Leeetal.ccoevnn. 718/101
(22) Filed: Feb. 29, 2012 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0226890 A1 Aug. 29,2013 Ruivo et al, Exploiting Total Order Multicast in Weakly Consistent
Transactional Caches, Proceedings from the 17th IEEE Pacific Rim
(51) Int.CL International Symposium on Dependable Computing, 2011, pp.
GOG6F 7/00 (2006.01) 99-108.*
GOG6F 17/00 (2006.01) (Continued)
GOG6F 17/30 (2006.01)
(52) ICJPSC ClL GOSF 17/30371 (2013.01 Primary Examiner — Marc Somers
R pme (D) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(58) Field of Classification Search
CPC .o GOG6F 17/30348; GOGF 17/30359; (57) ABSTRACT
GOG6F 17/30362; GOGF 17/30371 L. . .
USPC oo 707/695, 703, 704 A first process executing in a computer system in a data grid
See application file for complete search hist,ory. ’ receives a request to perform at least one transaction opera-
tion of a transaction based on remote transaction data of at
(56) References Cited least one other process in the data grid. The at least one other

U.S. PATENT DOCUMENTS

5,212,788 A 5/1993 Lomet et al.

5,966,706 A * 10/1999 Bilirisetal.c..co...... 707/10
6,073,140 A 6/2000 Morgan et al.

6,135,646 A * 10/2000 Kahnetal. 709/217
6,529,932 B1* 3/2003 Dadiomov et al. 718/101
6,564,215 Bl 5/2003 Hsiao et al.

process is capable to perform a prepare operation for a trans-
action. The first process identifies a local copy of the remote
transaction data in a local data structure and performs the at
least one transaction operation using the local copy of the
remote transaction data without acquiring a lock on the
remote transaction data.

20 Claims, 12 Drawing Sheets

600

60t

Y

Receive a request to perform
a transaction operation for a transaction

603

Identify a local copy of remote transaction data,
which is owned by another process,
{0 use for the transaction operation

v

Perform the transaction operation using
the focal copy of the remote transaction data
without acquiring @ lock on the remote transaction data

606

END

US 9,110,940 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0197994 Al 8/2012 Beerbower et al.
2013/0226891 Al 8/2013 Markus

OTHER PUBLICATIONS
Beerbower, Tom Oracle Coherence 3.6 Transaction Framework (pdf
slides). 2010. Retrieved from the Oracle website: http://coherence.
oracle.com/download/attachments/5112972/2011-01-13__ Coh3.6-
Transaction-Framework.pdf.
Oracle Coherence Developer’s Guide Release 3.6.1, Dec. 2010.
Retrieved Jan. 14, 2013 from the Oracle website: http://docs.oracle.
com/cd/E15357__01/coh.360/e15723 pdf.

Rosa et al. “Goal-oriented self-management of in-memory distrib-
uted data grid platforms,” In Cloud Computing Technology and Sci-
ence (CloudCom), 2011 IEEE Third International Conference on, pp.
587-591, IEEE, 2011.

USPTO; Office Action for U.S. Appl. No. 13/408,904, mailed Jan.
16, 2013.

USPTO; Office Action for U.S. Appl. No. 13/408,904, mailed Aug.
14, 2013.

USPTO; Office Action for U.S. Appl. No. 13/408,904, mailed Dec.
17, 2013.

USPTO; Office Action for U.S. Appl. No. 13/408,904, mailed Jul. 1,
2014, 25 pp.

* cited by examiner

US 9,110,940 B2

Sheet 1 of 12

Aug. 18, 2015

U.S. Patent

m_. T
eew Smn_

BEFT ainpojy beioys

D1PE sinpoy uonguisig

TFt =inpoyy uoiessdo

QGZ| SPON PUD EleQ
ECL £-55800id

7 G671 1eBeueyy uonoesuel | 7

L ETTmawon | | o

Q101G Smn_

UOROBSURI |

VEFT anpop ebesols

A

VIvl a|npop uoinguisig

v:

GETT anpopy ebriolg

7 THT uoneoyddy jualo 7 LP1 QPO uonngLisi
101 suiyoep b7 sinpopy uonesedo
GGZ1 3pON pU9 Eleq
GC2T 2-S89001d

001

061 Jobeuep uogoesues]

Gl uonesyddy juel)

50T BuloeEl

O¥1 sinpojy uogessdo

YG¢l 8PON pUg Ele(

vEC) |-58800id

7 67 Jebeueyy uonoesuel | 7

| Gpuopeojddy sy |
T0} suyoepy

!

| Ol

051 PuD BleQ

US 9,110,940 B2

Sheet 2 of 12

Aug. 18, 2015

U.S. Patent

792 e1eq Bupjoes|

€57 B1e(] UOISISA

TGz eieq buiddepy

¢ 9Ol

| 092 aju0)
| uonoesuel]

/
/ \\

5

\
\
|

702 8lnpoyy obeioig

GOZ s[npop uonesado

€0¢ SINPOJN UOISIBA

10¢ 8Inpoi uonnquisi

¢C OPON PU9 ejed

07 $S800.d JojeuiBuQ uonoBSues |

US 9,110,940 B2

Sheet 3 of 12

Aug. 18, 2015

U.S. Patent

Goc

N

€ Ol

e

/

00€

soueleg veeleleviy

00%

soueleq yZzl6lerby

(0

fmwo_o& W?V

K
odueleqg yeclbleryy

LGE

60€

US 9,110,940 B2

Sheet 4 of 12

Aug. 18, 2015

U.S. Patent

¥ Old
9% _—
BjeQ UOISION 10% einpoyy ebeioys
€9y eleq I

uonoesuURI | GOF sInpoyy uofesedQ

9% _ﬂ 0¥ SINPON UOISIBA

"\ TOV 2InPOo uoungLst
09 9101 BIEq L 0¥ SINPO uoangLasta

0C¥ 8PON pUO ejeq

001 Ss800.d palsiju3l

US 9,110,940 B2

Sheet 5 of 12

Aug. 18, 2015

U.S. Patent

{

A

\

{86G) uoision pue Adad aAle3al

156) uoisien pue Adoo jsenbas

(099) avepdn)

«—{656) 210)s——

VS Old

——{(79¢) apir0id——

Y

618
£-859001(

GOG € auyoRp [BNMIA

£0G ¢ 2uiyoB [BNJIA

(955) Aymuopt Ye——1{555) Yoouo——ie {£65) B1Ep oM
|§mv_%_>oa|v
(6v5) stepdh Ye—i115) yooyo—Ie {yps) m_au oM
|§mv_%_>oa|v
(1 7G) 810}~
{6£5) uoision pug Adod A8 ———»
—(/55) uaisian pue Adoo jsanbai
(9£9) AuuaDl Ye—(ges) wauo—i« (£€5) elep peas
«{}¢6) abessow—e—{0gG) Ubag—
715 TZG X809 31 T1G Jobeuspy coawwm ddy
2-SS8004d uopoesuel 1-$$800.1d uopoesues | .Em_._o

10G | suiyoep [EnMIA

US 9,110,940 B2

Sheet 6 of 12

Aug. 18, 2015

U.S. Patent

dg Ol

«——{(986) SAOWRI——

0ISI9A JUALIND JUBLWSIOU 1s8nk8)

=

(586) JuaLaIoU; e {85
(£86) EmE@G@ <«——(79G) UoISIaA JUBLIND JusaIoU Jsenbai——
(18) BUBIED Ya—1(085) YoRtI0———4—(5.G) HliuioO— a5 G) Hutiuioo—

——(9/5) Apeal—m—(; /<) Apeai—»

(G /) B812dUw 0
(r25) uwayey Y
{€/G) uo|sian pue aBesselu $5930Ns IARIB) >
{z16) 20| Ye {1 2G)uoISIaA JusLINO pueE ¥00] Jsanbai
———(0/G) uoISI8A pUB abessdLu SS339NS BAIDBI—,
(695) xo®AlAww£ UOISIaA JUBAIND PUE 430 169N~
(199) suniaidp Ye—I(595) 40auo——1e—(y99) asedaid—le—{£96) Usiuy—
B 175 £2G o0 . €15 Jobeuely CO_H%Q%
£-888001d | 7-558001d uoRoesuel} | |-8s8001d uonoesuel | .Eo_._o
G0G € sulyoBy [eNLIA £0G Z SUlLDB [BNUIA 10G | sUIyoB [BNMIA

U.S. Patent Aug. 18, 2015 Sheet 7 of 12 US 9,110,940 B2

600

601

Receive a request to perform
a transaction operation for a transaction

603

Identify a local copy of remote transaction data,
which is owned by another process,
to use for the transaction operation

605

y

Perform the transaction operation using
the local copy of the remote transaction data
without acquiring a lock on the remote transaction data

FIG. 6

U.S. Patent

Aug. 18, 2015 Sheet 8 of 12

C START
AN S/

701

4

Receive a request to read a value of a key

v
o~ 103
/ ™~ \//
S in .
7 Keyin

<_ local transaction >--YES
. pd
. context? -
N 4

~ /,/
\‘\,/

NO
v

705

Receive a copy of the value for the key,
the key, and information of the version
value for the key from an enlisted process

707

A4

Store a local copy of the
key, value, and version value
in the local transaction context

709

\ 4

Provide the value for the key

A

using the local copy in the
transaction originator process

FIG. 7

US 9,110,940 B2

700
/

U.S. Patent Aug. 18, 2015 Sheet 9 of 12 US 9,110,940 B2

D 800
LA, ¥
801
Receive a request to
write a new value for a key
/l 803
7 Keyin
< local transaction ~———YES
. context?
\‘\T//v‘
o
NL 805
Receive a copy of the value for the key,
the key, and information of the version
value for the key from an enlisted process
807
A 4 ~

Store a local copy of the
key, value, and version value
in the local transaction context

l /809

Update the value for the key
in the local transaction context
using the new value without acquiring i«
a lock on the remote transaction
data at the enlisted process

811

Provide the previous value for the
key using the local copy of the previous
value in the transaction originator process

U.S. Patent

FIG. 9

Aug. 18, 2015 Sheet 10 of 12

US 9,110,940 B2

/901 900

Receive a request from a transaction
manager o prepare at least one transaction
operation for a transaction for a commit

!

Identify one or more enlisted processes
that own transaction data pertaining
to the at least one transaction operation

903

!

805

Send a prepare request to the enlisted processes to
have each process attempt to acquire a lock on the
corresponding transaction data

N

ST 07

" Locks <

. acquired?
N . P e
v
YES
L4

909

Receive the current version value
from the at least one enlisted process for the
corresponding locked transaction data

¥ 913

/ - \“\\ 911
" Versions <
\\\match’?/« '

~.

Sending a message to the
transaction manager indicating
a failed prepare operation

YES
Y

915

Sending a message o the transaction manager
indicating the prepare operation was successful

!

017

Receive a request from a transaction manager to
commit the at least one transaction operation

!

919

Sending a message to the enlisted
process to increment the version value
for the corresponding transaction data

921

Remove local copy of the remote transaction data
from the local transaction context

U.S. Patent Aug. 18, 2015

" START

{ . /}',:

Sheet 11 of 12

1001
s

Receive a request from a transaction
originator process to prepare at least one
transaction operation for a transaction for a commit

'

1003

e .
Lock o NO

4

AN
L
. ,,/

S » -

‘acquired’? Py

YES

v

1007

Update the value for a key based on the
key and a new value received in the request

!

1009

Send a notification to the transaction
originator process indicating a lock has been
acquired and the current version value
associated with the locked transaction data

|

1011

Receive a request from the
transaction originator process to commit
the at least one prepared transaction operation
and to increment the version value for the
corresponding transaction data

|

1013

Increment the version value
for the corresponding transaction data

1015

Send a notification to the
transaction originator process
indicating the commit is successtul

US 9,110,940 B2

1000
»

1005
S

Sending a message to the
transaction originator process :
indicating a lock has not been acquired :

FIG. 10

U.S. Patent Aug. 18, 2015

Sheet 12 of 12 US 9,110,940 B2
- 1100
Processing Device 1102 g
Instructions 1122
Video Displa
Transaction Originator > 1“0p y
Process Module(s) ’ R
Enlisted Process Alpha-Numeric Input Device
Module(s) i 1112
“ Cursor Control Device
1114
Main Memory 1104) i Signal Generation Device
h " 1116
Instructions 1122
Transaction Originator o
Process Module(s) 3 REE
w
Enlisted Process @ Data Storage Device 1118
Module(s)
Machine-Readable Storage Medium
1128
Instructions 1122
: ’ R Transaction Originator
Static Memory « Process Module(s)
1106
Enlisted Process
Module(s)
Network Interface Device | |
1108 - .
‘K\ B .
Netwm

1120 . A S

US 9,110,940 B2

1
SUPPORTING TRANSACTIONS IN
DISTRIBUTED ENVIRONMENTS USING A
LOCAL COPY OF REMOTE TRANSACTION
DATA AND OPTIMISTIC LOCKING

RELATED APPLICATION

The present application is related to co-filed U.S. patent
application Ser. No. 13/408,904 entitled “Managing Versions
of Transaction Data Used for Multiple Transactions in Dis-
tributed Environments”, which is assigned to the assignee of
the present application.

TECHNICAL FIELD

Embodiments of the present invention relate to transac-
tions in distributed environments, and more particularly, to
supporting transactions in distributed environments using a
local copy of remote transaction data and optimistic locking.

BACKGROUND

In traditional data storage systems, such as databases, con-
sistency is usually achieved by a data locking mechanism to
prevent data from being corrupted or invalidated when mul-
tiple users try to write to the same data. When a lock of the
data is acquired for a transaction, the transaction has access to
the locked data until the lock is released. Databases support
the XA (X/Open XA) architecture and XA transactions,
which are transactions that consist of multiple operations that
access resources. For example, a banking application may
conduct an X A transaction that consists of two operations (1)
deduct money from a first bank account and (2) add money to
a second bank account. The second account may be in another
database system. Typically, either both of the operations relat-
ing to the XA transaction will be permanent, if successful, or
none of them will occur. The XA standard uses a two-phase
commit (2PC) protocol to ensure that all resources enlisted
within a transaction either commit or rollback to a previous
state. The first phase is preparation. If preparation is success-
ful, the second phase of commitment can be initiated.

A pessimistic locking approach typically acquires locks
with each write operation of a transaction. For example, a
lock may be acquired when the first bank account balance is
changed and a lock may be acquired when the second account
balance is changed. In an optimistic locking approach, locks
are usually not acquired until a transaction is being com-
pleted. For example, the transaction can change the account
balances for the two bank accounts within its own transac-
tions scope, even if the accounts are accessed by another
transaction at the same time without acquiring a lock. In a
typical distributed hybrid optimistic-pessimistic locking
approach, local locks may be acquired as a transaction
progresses and remote locks may be acquired when a trans-
action is prepared for a commitment.

Generally, when a database utilizes a pessimistic or a
hybrid locking approach, the database throughput is greatly
reduced because the database waits to acquire a lock for each
operation for one transaction and waits until a lock is released
to allow another transaction access to the same data. In a
database, the transaction data is maintained by a single oper-
ating system process. Thus, even when a lock is acquired
using optimistic locking, for example, during the commit
phase of a transaction, other transactions are still not able to
access the locked data. For example, if a first transaction has
acquired a lock on data in the database and a second transac-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion wishes to access the same data, the second transaction
waits until the lock is released because the data is not avail-
able elsewhere.

Data grids are an alternative to databases. A data grid
distributes data across multiple operating system processes.
The operating system processes can run an instance of a data
grid application and can use a distribution algorithm to deter-
mine which processes in the data grid have the data for a
transaction. Each process can own data and allow other pro-
cesses access to the data. Unlike a database, the distributed
data of a data grid removes single points of failure. Data grids
that support X A transactions typically implement a pessimis-
tic or hybrid locking approach and usually face the same
shortcomings of having a greatly reduced throughput. Even if
a data grid implements an optimistic locking approach, the
data grid is usually not operating efficiently because the data
grid keeps copies of the data for the optimistic locking in the
same place where the data is actually located. Storing copies
with that in the same location as the actual data may involve
anincreased number of expensive remote calls when the same
data is accessed repeatedly in the scope of a transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will be
understood more fully from the detailed description given
below and from the accompanying drawings of various
embodiments of the invention.

FIG. 1illustrates exemplary network architecture, in accor-
dance with various embodiments of the present invention.

FIG. 2 is a block diagram of an embodiment of modules in
a transaction originator process.

FIG. 3 illustrates exemplary version data, in accordance
with an embodiment.

FIG. 4 is a block diagram of an embodiment of modules in
an enlisted process.

FIGS. 5A-B are block diagrams of one embodiment of
virtual machines supporting transactions in a distributed envi-
ronment using a local copy of remote transaction data and
optimistic locking.

FIG. 6 is a flow diagram illustrating an embodiment for a
method of a transaction originator process copying remote
transaction data from enlisted processes(s) to a local transac-
tion context.

FIG. 7 is a flow diagram illustrating an embodiment for a
method of reading data for a transaction using a local copy of
remote transaction data.

FIG. 8 is a flow diagram illustrating an embodiment for a
method of writing data for a transaction using a local copy of
remote transaction data.

FIG. 9 is a flow diagram illustrating an embodiment for a
method of preparing and committing a transaction using a
local copy of remote transaction data.

FIG. 10 is a flow diagram illustrating an embodiment for a
method of committing remote transaction data that is owned
by another process.

FIG. 11 is a block diagram of an exemplary computer
system that may perform one or more of the operations
described herein.

DETAILED DESCRIPTION

Described herein are a method and apparatus for support-
ing transactions in a distributed environment using a local
copy of remote transaction data and optimistic locking. A data
grid distributes data across multiple operating system pro-
cesses. A process “owning” transaction data for a transaction

US 9,110,940 B2

3

hereinafter refers to a process that has a capability to perform
a prepare operation for the transaction. A process that owns
transaction data for a transaction is hereinafter referred to as
an “enlisted process.” An enlisted process can be identified by
a key that is contextually unique within a data grid. The data
grid can use a distribution algorithm (e.g, consistent hash
function) to identify which data is owned by which process in
the data grid.

A process that manages a transaction is hereinafter referred
to as a “transaction originator process.” Transaction data for
the transaction may not be owned by the transaction origina-
tor process and the transaction originator process can com-
municate with the enlisted process(es) which own the trans-
action data for a transaction. A transaction originator process
has a data structure, hereinafter referred to as a “transaction
context,” that stores copies of transaction data that is owned
by enlisted processes. A copy of transaction data in the trans-
action context is hereinafter referred to as a “local copy.”
Examples of a data structure can include, and are not limited
to, arrays, tables, lists, etc.

In one embodiment, a first process (e.g., transaction origi-
nator process) executing in a computer system in a data grid
receives a request, for example, from a client, application, to
perform at least one transaction operation of a transaction
based on remote transaction data that is owned by at least one
other process in the data grid. The first process (e.g., transac-
tion originator process) identifies a local copy of the remote
transaction data in a local data structure (e.g., transaction
context) and performs at least one transaction operation using
the local copy of the remote transaction data without acquir-
ing a lock on the remote transaction data at an enlisted pro-
cess. The first process may already have a local copy of the
remote transaction data in its transaction context. If the first
process does not have alocal copy of the data in its transaction
context, the first process can fetch the data from the remote
enlisted process and copy the data to its transaction context.
When the local copy of data is in the transaction context, the
transaction originator process can perform transaction opera-
tions using the local copies in the transaction context without
acquiring data locks on the data at the enlisted process(es)
until the transaction is being prepared. For example, Pro-
cess-1 (e.g., transaction originator process) receives a request
to perform two operations for a transaction: (1) determine the
balance for a first bank account and (2) determine the balance
of'the second bank account. Process-2 (e.g., enlisted process)
may own data for a first bank account and Process-3 (e.g.,
enlisted process) may own data for a second bank account.
Process-1 can run a distribution algorithm (e.g., consistent
hash function) to identify that Process-2 and Process-3 are the
enlisted processes for the transaction data for the transaction.
Process-1 can obtain a copy of the first bank account data
from Process-2 and to obtain a copy of the second bank
account data from Process-3 and store the copies in its trans-
action context. By storing a local copy of the data in the
transaction context of Process-1, Process-2 and Process-3 do
not have to maintain another version of the data for the trans-
action and the number of network call between Process-1
with Process-2 and Process-3 is minimized. Process-1 can
provide the account balances of the bank accounts to the
requester using the locally stored data in its transaction con-
text. The transaction may include two additional operations:
(3) deduct money from the first bank account and (4) add the
deducted money to the second bank account. Process-1 can
use the local copies of the data in its transaction context to
change the account balances for the bank accounts without
having to run the distribution algorithm again or having to

10

15

20

25

30

35

40

45

50

55

60

65

4

contact Process-2 or Process-3 or having to acquire a lock on
the remote transaction data at Process-2 and Process-3.

Embodiments greatly improve the efficiency of the opera-
tion of a data grid by minimizing the number of times a data
grid runs a distribution algorithm over a cluster to determine
which processes have the versions of data for a transaction.
Embodiments collect a copy of the remote transaction data
from the enlisted processes for the transaction and store the
copies locally in the transaction context of the transaction
originator process that is managing the transaction, which
minimizes the number of round trips of network calls between
the transaction originator process and enlisted process(es) to
operate on the transaction data and manage the versions of the
transaction data.

FIG. 1 is an exemplary network architecture 100 in which
embodiments of the present invention can be implemented.
The network architecture 100 can include multiple machines
103,105, 107 connected via a network (not shown). The net-
work may be a public network (e.g., Internet), a private net-
work (e.g., a local area network (LAN)), or a combination
thereof.

Machines 103, 105, 107 may be hardware machines such
as desktop computers, laptop computers, servers, or other
computing devices. Each of the machines 103, 105, 107 may
include an operating system that manages an allocation of
resources of the computing device (e.g., by allocating
memory, prioritizing system requests, controlling input and
output devices, managing file systems, facilitating network-
ing, etc.). In one embodiment, one or more of the machines
103, 105, 107 is a virtual machine. For example, one or more
of'the machines may be a virtual machine provided by a cloud
provider. In some instances, some machines may be virtual
machines running on the same computing device (e.g., shar-
ing the same underlying hardware resources). In one embodi-
ment, one or more of the machines 103, 105, 107 is a Java
Virtual Machine (JVM), which may run on a hardware
machine or on another virtual machine.

Machines 103, 105, 107 each include one or more pro-
cesses 123A-C. A process 123A-C is an operating system
process (e.g., a Java Virtual Machine instance). A process
123A-C can run a data grid node 125A-C, which is an
instance of a data grid application. A process 123A-C runs
one data grid node 125A-C. For example, Process-1 123A
runs data grid node 125A, Process-2 123B runs data grid node
125B, and Process-3 123C runs data grid node 125C. A
machine 103, 105, 107 can run more than one process
123 A-C and a corresponding data grid node 125A-C.

Each data grid node 125A-C may act as a server to clients
and as a peer to other data grid nodes 125A-C. An in-memory
data grid 150 is composed of multiple processes 123 A-C that
run on various machines 103, 105, 107 in the same cluster.
The processes 123A-C and corresponding data grid nodes
125A-C may communicate with each other via the network to
form the in-memory data grid 150. This may include using
peer-to-peer protocols to establish and manage membership
of'the in-memory data grid 150. An in-memory data grid 150
may rely on main memory for data storage. In-memory data
grids 150 are faster than disk-optimized data grids since disk
interactions are generally much slower than in-memory inter-
actions. For brevity and simplicity, an in-memory data grid
150 is used as an example of a data grid throughout this
document.

In one embodiment, the in-memory data grid 150 operates
in a client-server mode, in which the in-memory data grid 150
serves resources (e.g., a stateful data store 112, 114, 116 such
as a cache) to client applications 145. In one embodiment, a
machine 103, 105, 107 is a client machine hosting one or

US 9,110,940 B2

5

more applications 145. An application 145 can be any type of
application including, for example, a web application, a desk-
top application, a browser application, etc. An application
145 can be hosted by one or more machines 103, 105, 107. In
one embodiment, the in-memory data grid 150 acts as a
shared storage tier for client applications 145. A separate
memory space may be generated for each client application
145. In one embodiment, a client application 145 runs outside
of the virtual machines (e.g., machines 103, 105, 107) of the
data grid nodes 125A-C. In another embodiment, a client
application 145 runs in the same virtual machine as a data grid
node 125A-C. In another embodiment, a client application
145 may not be a Java-based application and may not be
executed by a Java Virtual Machine.

A process 123A-C in the data grid 150 may execute data
operations, such as to store objects, to retrieve objects, to
perform searches on objects, etc. Unlike a database, the in-
memory data grid 150 distributes stored data across data
stores 112, 114, 116 (e.g., cache-nodes, grid-noes) in the
multiple processes 123 A-C. The in-memory data grid 150 can
include a volatile in-memory data structure such as a distrib-
uted cache. Each process 123A-C can maintain a data store
112, 114, 116 (e.g., cache-node, grid-node). In one embodi-
ment, the data grid 150 is a key-value based storage system to
host the data for the in-memory data grid 150 in the data stores
112,114, 116.

The key-value based storage system (e.g., data grid 150)
can hold and distribute data objects based on a distribution
algorithm (e.g., a consistent hash function). For example, the
data grid 150 may store bank account objects with a key-value
model of (accountNumber, accountObject). The data grid 150
can store a particular key-value pair by using a distribution
algorithm to determine which of the processes 123A-C stores
the particular value for the key-value pair and then place the
particular value within that process. Each process 123A-C of
the data grid 150 can use the distribution algorithm to allow
key look up.

When a client application 145 is adding (e.g., writing) data
to the data grid 150, the client application 145 can connect to
any process 123A-C in the data grid 150 and provide the
key-value pair (e.g., accountNumber, BankAccount instance)
to the process. A process 123A-C can include a distribution
module 141 A-C to determine, based on the key (i.e. account-
Number) and a distribution algorithm, which process in the
data grid 150 is the enlisted process where the data (e.g.,
key-value pair) is to be stored. The distribution module
141A-C may then send the key-value pair to the enlisted
process 123A-C via the network. A process 123A-C can
include a data storage module 143A-C to store the key-value
pair in its corresponding data store 112, 114, 116.

For example, a client application 145 may connect to Pro-
cess-1 123 A and passes a key-value pair to Process-1 123 A to
add data to the data grid 150. The distribution module 141A of
Process-1 123 A uses the key and a distribution algorithm to
identify that Process-2 123B is the enlisted process for the
key. Process-2 123B stores the data that corresponds to the
key in its data store 114. The distribution module 141A of
Process-1 123A may then send the key-value pair to the
enlisted process, Process-2 123B via the network. Upon
receiving the key-value pair, the storage module 143B in
Process-2 123B may store the key-value pair in its data store
114.

When a client application 145 is reading data from the data
grid 150, the client application 145 provides the key of the
data to be read to a process 123A-C. The client application
145 can connect to any process 123A-C and issue a get
request passing the key to the process which the client con-

25

40

45

50

55

6

nects to. For example, a client application 145 passes the key
accountNumber to read the BankAccount objects that corre-
spond to the key to Process-1 123A. The distribution module
141A of Process-1 123 A can use the key and the distribution
algorithm to determine which is process is the enlisted pro-
cess that holds the given key. The distribution module 141A
of Process-1 123A may then fetch the data (e.g., values for
BankAccount objects) from the enlisted process and return
the data to the client application 145.

Keys and the corresponding values may be owned and
managed by more than one process and a corresponding
cache. The ownership of the data is distributed amongst the
multiple processes. The data is not owned by a single entity
(e.g., process). For example, key “4442191224 Balance” and
the corresponding value “400” may be owned by Process-2
123B running data grid node 125B. Key “86753090000_Bal-
ance” and the corresponding value “2000” may be owned by
Process-3 123C running data grid node 125C.

Each data grid node 125A-C may act as a server for the data
grid. Therefore, a client application 145 may communicate
with any data grid node 125A-C of the in-memory data grid
150 to access data stored in the in-memory data grid 150. A
client application 145 can request a number of data operations
to be performed on the in-memory data grid 150. The data
grid 150 can support multi-operational transactional access of
the processes 123 A-C and the corresponding data stores 112,
114, 116. A multi-operational transaction can be an XA
(X/Open XA) transaction. For brevity and simplicity, an XA
transaction is used as an example of a multi-operational trans-
action throughout this document. In the XA architecture, an
XA transaction is a distributed transaction that consists of
multiple operations that access one or more resources.
Examples of transaction operations for a XA transaction can
include, and are not limited to, start, read, write, prepare,
commit, rollback, and recover operations. Performing opera-
tions that pertain to multi-operational transactional access on
data in the in-memory data grid 150 may be performed by
calling a get, put, remove, replace, start, prepare, commit,
rollback, and recover functions on one or more processes
123 A-C of the in-memory data grid 150.

The operations that pertain to an XA transaction are con-
sidered to be within the scope of an XA transaction. Some
multi-operational transactional standards, such as the XA
standard, use a two-phase commit (2PC) protocol to ensure
that all resources enlisted within a transaction either commit
or rollback any particular transaction consistently (all of the
resources do the same). An XA transaction should succeed or
fail as a complete unit. If any of the operations within the
scope of an XA transaction are not successful, none of the
operations within the scope of the XA transaction are com-
mitted to an in-memory data grid 150. For example, a banking
application (e.g., client application 145) may wish to conduct
a transaction that consists of three operations: (1) get the
current balance for a first bank account, (2) deduct money
from the first bank account, and (3) add the deducted money
to a second bank account. Before any of the write operations
are committed to the data grid 150, the success of performing
of each write operation is first determined.

A client application 145 can initiate a transaction having
multiple operations (e.g., get balance, reduce balance,
increase balance) by communicating a start of a transaction to
a transaction manager 190. A transaction manager 190 com-
municates with a client application 145 and with the various
processes 123A-C in the data grid 150 to manage the trans-
action. In one embodiment, each of the processes 123A-C

US 9,110,940 B2

7

includes a transaction manager 190 to allow a client applica-
tion 145 to initiate a transaction with any process 123A-C in
the data grid 150.

A prepare operation includes taking steps, such as acquir-
ing a lock on transaction data, to ensures that a future commit
request may succeed. For example, the transaction data for a
transaction having three operations (e.g., get balance in first
account, reduce balance in first account, increase balance in
second account) may be owned by Process-2 123B and Pro-
cess-3 123C. Process-2 123B may own key
“4442191224_Balance” and the corresponding value “400”
and store the data in its data store 114. Process-3 123C may
own key “8675309000_Balance” and the corresponding
value “2000” and store the data in its data store 116. The
transaction originator process, Process-1 123 A, can commu-
nicate with the two enlisted processes, Process-2 123B and
Process-3 123C, for the transaction.

Atransaction originator process (e.g., Process-1123A) can
include a distribution module 141A to communicate with
distribution module 141B in the enlisted processes (e.g., Pro-
cess-2 123B, Process-3 123C) to obtain a copy of the remote
transaction data stored in the data stores 114,116 of Process-2
123B and Process-3 123C. The transaction originator process
(e.g., Process-1 123 A) can include a storage module 143 A to
store the copies in the transaction context 113 of the transac-
tion originator process (e.g., Process-1 123A). A transaction
context 113 can be a data structure that stores copies of
transaction data that is owned by enlisted processes.
Examples of a data structure can include, and are not limited
to, arrays, tables, lists, etc. The transaction originator process
(e.g., Process-1 123 A) can include an operation module 140
to perform transaction operations (e.g., get balance, reduce
balance, increase balance) using the local copy of remote
transaction data stored in its transaction context 113. In one
embodiment, each process 123A-C runs a distribution mod-
ule 141A-C, a storage module 143A-C, and an operation
module 140. One embodiment of modules in a transaction
originator process is described in greater detail below in
conjunction with FIG. 2. One embodiment of modules in an
enlisted process is described in greater detail below in con-
junction with FIG. 4.

The transaction originator process (e.g., Process-1 123A)
can make sure that either all of the operations (e.g., get bal-
ance, reduce balance, increase balance) within the scope of
transaction successfully happen or none of them occur. For
instance, there may be a system failure or an operation failure
pertaining to one of the processes 123A-C related to the
transaction with regard to deducting money from the first
bank account and/or adding money to the second bank
account. In such a case, the banking application 145 may wish
that the operations that deducted money from the first bank
account and adding money to the second account, as well as
any other operations performed within the scope of the trans-
action, rollback to a previous state. A rollback command
instructs the processes 123A-C related to a transaction to
cause any operation that was performed for a particular trans-
action to be returned to a previous state. A commit command
instructs the enlisted processes (e.g., processes 123B,C) to
apply the change to allow other transactions to have access to
the changed data.

The transaction originator process (e.g., Process-1 123A)
and the enlisted processes (e.g., Process-2 123B, Process-3
123C) can use optimistic locking to ensure that either all of
the operations for a transaction successfully happen or none
of them are committed. Optimistic locking is a pattern of
achieving locking in a data storage system, such as the data
grid 150. Unlike some locking mechanisms, which lock data

10

20

40

45

55

60

8

as each operation (e.g., write) occurs, optimistic locking does
not attempt to acquire a lock on the data until a prepare phase.
Optimistic locking is a concurrency control method that
assumes that operations for a transaction can complete with-
out affecting each other, and that the transaction operations
can proceed without locking the transaction data that they
affect until the transaction enters phase two (e.g., commit
phase) of a two-phase commit protocol. During the commit
phase and before an actual committment is made, each trans-
action operation is verified to ensure that no other transaction
has modified the transaction data.

The transaction originator process and enlisted processes
can use a version value associated with the local copy of
remote transaction data in a transaction context 113 of trans-
action originator process (e.g. Process-1 123A) and the ver-
sion value of the remoted transaction data stored in the data
stores 114,116 of the enlisted processes (e.g., Process-2
123B, Process-3 123C) to determine whether the remote
transaction data can be successfully prepared for a commit
operation. Embodiments of using a version value to prepare a
transaction operation for a commit is described in greater
detail below in conjunciton with FIG. 5 and FIG. 9. When the
local copy in the transaction context 113 is no longer being
used for the transaction, the distribution module 141A can
remove the local copy from the transaction context 113 of
transaction originator process.

FIG. 2 illustrates a block diagram of one embodiment of
modules in a transaction originator process 200. One embodi-
ment of modules in an enlisted process are described in FIG.
4 below. The transaction originator process 200 runs a data
grid node 220 and may correspond to Process-1 123A and
data grid node 125A running in a machine 103 of FIG. 1. In
one embodiment, the transaction originator process 200
includes a distribution module 201, a version module 203, an
operation module 205, and a storage module 207.

The distribution module 201 can be coupled to a data store
250 that stores mapping data 251 that can be used to deter-
mine which data stores (e.g., caches) are associated with
which processes. The distribution module 201 can use the
mapping data 251 and a distribution algorithm (e.g., consis-
tent hashing algorithm) to determine data-to-process associa-
tions to identify the enlisted processes that have cache data
associated with a particular cache name for a transaction. For
example, a transaction relates to changing Account-Balance
data having the key “4442191224_Balance” and the distribu-
tion module 201 can use the data-to-process associations to
determine that the key “4442191224_Balance” is owned by
Process-2.

The distribution module 201 can check a transaction con-
text 260 coupled to the distribution module 201 to determine
whether a copy of the remote transaction data that is associ-
ated with the key is stored in the transaction context 260. The
transaction context 260 can be a data structure, such as, and
not limited to, arrays, tables, lists, etc., that stores copies of
transaction data that is owned by enlisted processes.

The distribution module 201 can obtain a copy of the
remote transaction data that is owned by the enlisted pro-
cesses. The storage module 207 can store the copy in the
transaction context 260. The distribution module 201 can
create a local copy by sending a network call (e.g., remote
procedure call (RPC)) to the enlisted process (e.g. Process-2)
to request a copy of the remote transaction data.

The version module 203 can store version data 265 in the
data store 250. The version data 265 can identify the version
value of the local copy that is assigned to the local copy at the
time the copy is stored in the transaction context 260. In one
embodiment, the version data 265 can include a pointer to a

US 9,110,940 B2

9

version value that is maintained remotely at the enlisted pro-
cess (e.g., Process-2). The version module 203 can create the
version data 265 by sending a network call (e.g., RPC) to the
enlisted process (e.g. Process-2) to establish a pointer to the
version value at the enlisted process. In another embodiment,
the version data 265 can include an actual version value.

At any time, the version module 203 can send a network
call to an enlisted process to request a current version value
that is associated with the key (e.g., key “4442191224_Bal-
ance”) and can compare it to the version value represented in
the version data 265 in the data store 250 to determine
whether the version values match. For example, at the time
Process-1 made a copy of the key “4442191224_Balance”
and the corresponding value “400,” the version value repre-
sented by version data 265 may have been a “0” value. Sub-
sequently, Process-2 may have added a new version for the
key “4442191224 Balance” and may have incremented the
current version value to “1”

FIG. 3 illustrates exemplary version data stored at the
enlisted process and at the transaction originator process,
according to some embodiments. The version data main-
tained at the enlisted process can be a table 301 that includes
entries having the key 309, value 311 for the key, and version
value 303. The version data maintained at the transaction
originator process can be a table 351 that includes the key
353, value for the key 355, and a pointer 357 to the version
value 303 at the enlisted process that corresponds to when the
local copy of the key 353 and value 355 was created at the
transaction originator process. Subsequently, the enlisted
process may update the value 311 of the key with a new value
305 and a new version value 307, for example, by adding a
new entry to the table 301. The pointer 357 in the version data
351 at the transaction originator process is unchanged and
continues to point to the version value 303 which corresponds
to when the copy was created.

Returning to FIG. 2, the version module 203 may request a
current version value (e.g., current version value 307 in FIG.
3)thatis associated with thekey (e.g., key “4442191224_Bal-
ance”) from Process-2 and compare it to the version value
(e.g., pointer 357 to version value 303 in FIG. 3) that is
represented by the version data 265 in the data store 250 and
determine whether there is a match.

The operation module 205 can receive requests to perform
a transaction operation of a transaction. The request can be
from an XA compliant transaction manager (e.g., XA com-
pliant transaction manager 190 in FIG. 1) or a client applica-
tion (e.g., client application 145 in FIG. 1). Examples of a
transaction operation can include, and are not limited to, start,
read, write, prepare, commit, and rollback. A read operation is
also hereinafter referred to as a get operation. A write opera-
tion is also hereinafter referred to as a put operation. The
operation module 205 can perform requested transaction
operations, such as get, put, replace, using the local copy of
the remote transaction data in the transaction context 260. For
example, the operation module 205 can perform a get opera-
tion to provide a value to a requester (e.g., client application)
using the local copy of key “4442191224_Balance” in the
transaction context 260. In another example, the operation
module 205 can perform a put operation to change a value
using the local copy of key “4442191224_Balance” in the
transaction context 260.

The operation module 205 can communicate with the
enlisted processes to perform requested operations, such as
prepare, commit, and rollback. The operation module 203 can
send a message (e.g., prepare transaction message, commit
transaction message) to the enlisted processes. A commit is to
make a set of changes that were made to one or more caches

10

15

20

25

30

35

40

45

50

55

60

65

10

for a particular X A transaction permanent. A prepare request
can cause enlisted processes to take steps (e.g., acquire alock)
for ensuring that a future commit request will succeed. One
embodiment of communicating with the enlisted processes to
perform a transaction operation is described in greater detail
below in conjunction with FIGS. 5A-B.

The enlisted processes can receive a message (e.g., prepare
transaction message, commit transaction message) and send
an appropriate response to the operation module 205 in the
transaction originator process 200. Examples of the
responses can include, and are not limited to, a response
indicating that a prepare operation was successful, a response
indicating that a prepare operation was not successful, and a
response indicating a current version value associated with a
particular transaction data. The operation module 205 can
store tracking data 267 in the data store 250 to track the
responses received from the enlisted processes. The operation
module 205 can generate and send a message to a requester
(e.g. client application) based on the tracking data 267. For
example, when the operation module 205 receives a success-
ful prepare response from all of the enlisted processes and the
version module 203 determines that the version values match
for each transaction data, the operation module 205 can send
a message to the requester (e.g., client application) indicating
that the multi-operational transaction is ready for commit.

FIG. 4 illustrates a block diagram of one embodiment of
modules in an enlisted process 400. The enlisted process 400
and data grid node 420 may correspond to enlisted processes
123B,C and data grid nodes 125B.C running in machines
105,107 of FIG. 1. In one embodiment, the enlisted process
400 includes a distribution module 401, a version module
403, an operation module 405, and a storage module 407.

The distribution module 401 can receive a request from a
transaction originator process (e.g., Process-1 123 A in FIG.
1) for a copy of transaction data 463 or portion of the trans-
action data 463 that is stored in the data store 460 that is
coupled to the distribution module 400. The request may be a
network call (e.g., RPC). The request can include a key. The
transaction data 463 is data that is owned and maintained by
the enlisted process. The data store 460 can be a cache. The
transaction data 463 can include key-value pairs (e.g., key-
value pairs in table 301 in FIG. 3). The distribution module
401 can send a copy of the transaction data 463 for the
requested key to the transaction originator process via a net-
work call.

The operation module 405 can receive a request from a
transaction originator process to perform a transaction opera-
tion, such as a prepare transaction, a commit transaction, and
arollback transaction. The request can be a network call (e.g.,
RPC). A prepare transaction request can include a key (e.g.,
“4442191224_Balance”) and a new value for the key. A pre-
pare transaction request can include a request to acquire a
lock on the transaction data 463 for the requested key and to
update the current value for the key using the new value
received in the prepare transaction request. The operation
module 405 can attempt to acquire a lock and update the
current value for the key if a lock is acquired. The operation
module 405 can send a message to the transaction originator
process indicating whether the lock attempt was successful or
not.

A commit transaction request can be a request to increment
the version value for a key and to release the locks. The
version module 403 can increment the version value for a key
in the version data 465 and the operation module 405 can
release the locks. The version module 403 can store version
data 465 in the data store 260. The version data 465 can
include a version value for the value of each pair (e.g., version

US 9,110,940 B2

11

value in table 301 in FIG. 3). For example, “400” may be the
first value assigned to the key “4442191224_Balance” and
the version value for the “400” may be “0.” The version
module 403 can increment the version value by adding a new
version to the version data 465. For example, the version
module 403 can add a new entry having the new version value
to a table. The request for the copy of transaction data 463 for
aparticular key can include a request for the version value that
is assigned to the transaction data 463 for the particularkey. In
one embodiment, the version module 403 sends a location of
the version value to the transaction originator process and the
transaction originator process stores a pointer to the location
in a data store. In another embodiment, the version module
403 sends the version value (e.g., “0”) to the transaction
originator process and the transaction originator process
stores the version value in a data store. At any point in time,
the version module 403 can receive a request from a transac-
tion originator process for a current version value that is
associated with a key, and the version module 403 can send
the current version value to the transaction originator process.

FIGS. 5A-B are block diagrams of one embodiment of
supporting transactions in a distributed environment using a
local copy of remote transaction data and optimistic locking.
A first virtual machine 501 can include a client application
511, a transaction manager 513, a transaction originator Pro-
cess-1 515 running a data grid node, and a transaction context
523. A second virtual machine 503 can include enlisted Pro-
cess-2 517 running a data grid node. A third virtual machine
505 can include enlisted Process-3 519 running a data grid
node.

A client application 511 sends (530) a begin transaction
message to the transaction manager 513 that notifies the
transaction manager 513 that all of the following operations
are in the scope of a particular transaction. The transaction
manager 513 sends (531) a message to the transaction origi-
nator Process-1 515 that all of the following operations are in
the scope of a particular transaction.

A client application 511 sends (533) a read operation
request for a XA transaction to the transaction originator
Process-1 515. The read operation request can include one or
more cache names and one or more keys identifying the
transaction data associated with the read operation. For
example, the read operation is a request relating to key
“4442191224_Balance.” The transaction originator Pro-
cess-1 515 checks (535) the its transaction context 523 to
determine whether a local copy of the requested key and the
corresponding value is stored in the transaction context 523.
Ifthere is not a copy in the transaction context 523 the trans-
action originator Process-1 515 uses mapping data, a consis-
tent hashing algorithm, and the key and cache name from the
get request to identify (536) the process that owns and man-
ages the key for the transaction. For example, the transaction
originator Process-1 515 determines that Process-2 517 owns
the transaction data having key “4442191224_Balance.”

The transaction originator Process-1 515 requests (537) a
copy of the remote transaction data (e.g., key and value) and
a version value associated with the remote transaction data
from the enlisted process, Process-2 517. The transaction
originator Process-1 515 receives (539) the copy and version
value and stores (541) the copy and the version value in the
transaction context 523. For example, the value may be “400”
and the version value may be “0.” The transaction originator
Process-1 515 can store a pointer in the transaction context
523 that points to a remote version value in the other process
(e.g., Process-2 517). One embodiment of creating a copy of
the remote transaction data in the local transaction context is
described in greater detail below in conjunction with FIG. 7.

10

15

20

25

30

35

40

45

50

55

60

12

The transaction originator Process-1 515 provides (543) the
value (e.g., “4007) for key “4442191224 Balance” that is
stored in the transaction context 523 to the client application
511.

The client application 511 sends (544) a write operation
request for the same XA transaction to transaction originator
Process-1515. The write operation request can include one or
more keys identifying the transaction data associated with the
write operation and new value(s) associated with the write
operation. For example, the write operation is arequest for the
new value “300” to be assigned to the key “4442191224_Bal-
ance” to replace the current value “400” to represent a $100
deduction in the bank account.

The transaction originator Process-1 515 checks (547) the
context transaction context 523 to determine whether a local
copy of the requested key and the corresponding value is
stored in the transaction context 523. The transaction origi-
nator Process-1 515 locates the requested key and the corre-
sponding value in the transaction context 523 and updates
(549) the value for the requested key. The transaction origi-
nator Process-1 515 can replace the current value “400” for
the key with the new value “300” or can add the new value
“300” for the key “4442191224_Balance” in the transaction
context 523. The transaction originator Process-1 515
updates (549) the value for the requested key in the transac-
tion context 523, but the pointer to the version value (e.g.,
“07) is not changed in the version data stored in a data store.
The pointer still points to the “0” value at Process-2 517. The
transaction originator Process-1 515 updates (549) the value
for the requested key in the transaction context 523 without
acquiring a lock on the remote transaction data at Process-2
517. The transaction originator Process-1 515 provides (552)
the previous value (e.g., 400) for key “4442191224_Balance”
that is stored in the transaction context 523 to the client
application 511.

The client application 511 sends (553) another write opera-
tion request for the same XA transaction to the transaction
originator Process-1 515. For example, the write operation is
a request for the new value “2100” to be assigned to the key
“8675309000_Balance” to replace the current value “2000”
to represent a $100 increase in the bank account. The trans-
action originator Process-1 515 checks (555) the transaction
context 523 of Process-1 515 and determines that a local copy
of'the requested key and the corresponding value is not stored
in the transaction context 523. The transaction originator
Process-1 515 uses mapping data, a consistent hashing algo-
rithm, and the key and cache name from the write request to
identify (556) that Process-3 519 owns the transaction data
having key “8675309000_Balance.” The o transaction origi-
nator Process-1 515 requests (557) a copy of the transaction
data (e.g., key and value) and a version value associated with
the transaction data from the enlisted process, Process-3 519.
The transaction originator Process-1 515 receives (558) the
copy and version value and stores (559) the copy and the
version value in the transaction context 523. For example, the
stored value may be “2000” and the stored version value may
be a pointer to “0” in Process-3 519.

The transaction originator Process-1 515 updates (560) the
value in the transaction context 623 for the requested key. The
transaction originator Process-1 515 updates (560) the value
for the requested key in the transaction context 523 without
acquiring a lock on the remote transaction data at Process-3
519. The transaction originator Process-1 515 can replace the
current value “2000” for the key with the new value “2100” or
can add the new value “2100” for the key “8675309000_Bal-
ance” in the transaction context 523. The transaction origina-
tor Process-1 515 updates (560) the value for the requested

US 9,110,940 B2

13

key in the transaction context 523, but the pointer to the
version value (e.g., “0”) is not changed in the version data
store in the data store. The pointer still points to the “0” value
at Process-3 519. The transaction originator Process-1 515
provides (562) the previous value (e.g., 2000) for key
“8675309000_Balance” in the transaction context 523 to the
client application 611.

In FIG. 5B, the client application 511 sends (563) a finish
transaction request for the same XA transaction to the same
transaction manager 513. The transaction manager 513 sends
(564) a prepare message to the transaction originator Pro-
cess-1 515 to initiate the first phase of a two-phase commit
protocol. The first phase is a prepare phase and the second
phase is a commit phase. The prepare message instructs Pro-
cess-1 515 to prepare the XA transaction for a commit opera-
tion. Preparation can include, for example, and not limited to,
one or more enlisted processes (e.g., Process-2 517, Pro-
cess-3 519) in the data grid to acquire data locks for the
particular transaction data which is changing.

The prepare transaction request can include the XID (XA
compliant transaction identifier) for the transaction. The
transaction manager 513 sends (564) a prepare transaction
request to the transaction originator Process-1 515. The trans-
action originator Process-1 515 checks (565) the transaction
context 523 to determine which keys are associated with the
transaction. The transaction originator Process-1 515 uses
mapping data, a consistent hashing algorithm, and the keys
from the transaction context 523 to determine (567) which
enlisted processes to send a prepare message to.

The transaction originator Process-1 515 sends (568, 571)
a prepare message via network calls over the network to all of
the enlisted processes (e.g., Process-2 517, Process-3 519) for
the transaction to perform a prepare operation. The prepare
transaction request can include the key(s) that should be
locked and the corresponding new values for the keys. The
key(s) that should be locked correspond to keys related to a
write operation. Locks should not be acquired for keys that
pertain to read operations.

The prepare message can also include a request for the
enlisted process to provide a current version associated with
the locked transaction data. The enlisted process (e.g., Pro-
cess-2 517, Process-3 519) attempts to lock (569,572) the
transaction data for the transaction. If the enlisted process
517,519 is not able to obtain a lock, for example, because the
transaction data is already locked for another transaction, the
enlisted process 517,519 sends a message to the transaction
originator Process-1 515 indicating the failed lock attempt.
One embodiment of a failed lock attempt is described in
greater detail below in conjunction with FIG. 9. If the enlisted
process 517,519 is able to obtain a lock, the enlisted process
517,519 locks the data and changes the value that corresponds
to the key using the new value received in the prepare request
and sends (570,573) a message to the transaction originator
Process-1 515 indicating a successtul lock attempt and the
current version value associated with the locked transaction
data.

The transaction originator Process-1 515 stores tracking
data to keep track of the response messages it receives from
the various enlisted processes 517,519. The transaction origi-
nator Process-1 515 determines (574) whether a successful
lock message is received from each enlisted process 517,519.
There can be any number of enlisted processes for a transac-
tion. For brevity and simplicity, two enlisted process, Pro-
cess-2 517 and Process-3 519, are used as an example in
FIGS. 5A,B. If the transaction originator Process-1 515 deter-
mines there is not a successful lock message received from
each enlisted process, the transaction originator Process-1

20

40

45

55

14

515 can send a message to the transaction manager 513 indi-
cating a failed prepare. If the transaction originator Process-1
515 determines there is a successful lock message received
from each enlisted process, the transaction originator Pro-
cess-1 515 compares (575) the current version value associ-
ated with the locked transaction data with the version value
that is represented in the transaction context 523.

If the version values do not match for at least one locked
transaction data, the transaction originator Process-1 515
sends a message to the transaction manager 513 indicating a
failed version match. One embodiment of a failed version
match is described in greater detail below in conjunction with
FIG. 9. Ifthe version values match for each locked transaction
data, the transaction originator Process-1 515 sends (576) a
ready to commit message to the transaction manager 513. The
transaction manager 513 send (577) the ready to commit
message to the client application 511.

The client application 511 sends (578) a commit transac-
tion request for the same XA transaction to the same transac-
tion manager 513 to initiate the second phase ofthe two-phase
commit protocol. A commit operation applies the changes
relating to the transaction data such that the change can be
read for other subsequent transactions. The commit transac-
tion request can include the XID for the transaction. The
transaction manager 513 sends (579) a commit transaction
request to the transaction originator Process-1 515. The trans-
action originator Process-1 515 checks (580) the transaction
context 523 to determine which keys are associated with the
transaction. The transaction originator Process-1 515 uses
mapping data, a consistent hashing algorithm, and the keys
from the transaction context 523 to determine (581) which
enlisted processes to send a commit message to.

The transaction originator Process-1515 sends (582,584) a
commit message via network calls over the network to all of
the enlisted processes (e.g., Process-2 517, Process-3 519) for
the transaction to perform a commit operation. The commit
message can include a request for the enlisted process to
increment the version value for the corresponding transaction
data. The enlisted processes (e.g., Process-2 517, Process-3
519) increments (583,585) the version value for the corre-
sponding key for the transaction. When the local copy of the
transaction data in the transaction context 523 is no longer
being used for the transaction, the transaction originator Pro-
cess-1 515 can remove (586) the local copy from the trans-
action context 523.

FIG. 6 is a flow diagram of an embodiment of a method 600
for a transaction originator process copying remote transac-
tion data from one or more enlisted processes to a local
transaction context. Method 600 can be performed by pro-
cessing logic that can comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (e.g., instructions run on a processing device), or a
combination thereof. In one embodiment, method 600 is per-
formed by at transaction originator process 123 A executing in
a machine 103 of FIG. 1.

At block 601, processing logic receives a request, for
example, from a client application or a transaction manager,
to perform a transaction operation (e.g., read, write) for a
transaction. The request can be for one or more transaction
operations for a transaction. At block 603, processing logic
identifies a local copy of remote transaction data for the
transaction operation. The copy is of transaction data that is
owned by an enlisted process. The copy is stored in the
transaction context of the transaction originator process. At
block 605, processing logic performs the transaction opera-
tion (e.g., read, write) using the copy of the remote transaction
data that is stored in the transaction context without acquiring

US 9,110,940 B2

15

a lock on the remote transaction data at the enlisted process.
One embodiment of a transaction originator process reading
data for a transaction using a local copy of remote transaction
data is described in greater detail below in conjunction with
FIG. 7. One embodiment of a transaction originator process
writing data for a transaction using a local copy of remote
transaction data is described in greater detail below in con-
junction with FIG. 8. One embodiment of a transaction origi-
nator process preparing and committing a transaction using a
local copy of remote transaction data is described in greater
detail below in conjunction with FIG. 9.

FIG. 7 is a flow diagram of an embodiment of a method 700
for reading data for a transaction using a local copy of remote
transaction data. Method 700 can be performed by processing
logic that can comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device), or a combination
thereof. In one embodiment, method 700 is performed by a
transaction originator process 123 A executing in a machine
103 of FIG. 1.

At block 701, processing logic receives a request for a
transaction to read a value for a key. The request can be a get
(key) operation to read a particular key. The request can be
from a transaction manager or a client application. The
request can include a cache name. At block 703, processing
logic determines whether the key is in the local transaction
context. [fthe key is in the local transaction context, process-
ing logic provides the value for the key using the local copy in
the transaction originator process at block 709. If the key is
not in the local transaction context (block 703), processing
logic receives a copy of the value for the key from an enlisted
process at block 705. Processing logic can also receive the
key and information of the version value that is assigned to the
value of the key. At block 707, processing logic stores the
copy of the key, the value for the key, and the information for
the version value in the local transaction context. In one
embodiment, processing logic stores a pointer to the location
at the enlisted process of the version value. In another
embodiment, processing logic stores the actual version value.
Atblock 709, processing logic provides the value to the client
application using the local copy in the transaction context in
the transaction originator process.

FIG. 8 is a flow diagram of an embodiment of a method 800
for writing data for a transaction using a local copy of remote
transaction data. Method 800 can be performed by processing
logic that can comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device), or a combination
thereof. In one embodiment, method 800 is performed by a
transaction originator process 123 A executing in a machine
103 of FIG. 1.

At block 801, processing logic receives a request for a
transaction to write a new value for a key. The request can be
aput (key) operation to write a new value for a particular key.
The request can be from a transaction manager or a client
application. At block 803, processing logic determines
whether the key is in the local transaction context. If the key
is in the local transaction context, processing logic updates
the value for the key in the local transaction context using the
new value received in the request without acquiring a lock on
the remote transaction data at the enlisted process at block
809. If the key is not in the local transaction context, process-
ing logic receives a copy of the value for the key, the key, and
information of the version value for the key from an enlisted
process atblock 805. At block 807, processing logic stores the
copy of the key, the value for the key, and the information for
the version value in the local transaction context. At block

10

15

20

25

30

35

40

45

50

55

60

65

16

809, processing logic updates the value for the key in the local
transaction context using the new value received in the
request without acquiring a lock on the remote transaction
data at the enlisted process. At block 811, processing logic
provides the previous value to the transaction manager and/or
to the client application using the local copy of the previous
value in the transaction originator process.

FIG. 9 is a flow diagram of an embodiment of a method 900
for preparing and committing a transaction using a local copy
of remote transaction data. Method 900 can be performed by
processing logic that can comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (e.g., instructions run on a processing device), or a
combination thereof. In one embodiment, method 900 is per-
formed by a transaction originator process 123 A executing in
a machine 103 of FIG. 1.

At block 901, processing logic receives a prepare transac-
tion request from an XA compliant transaction manager to
prepare transaction operations for an XA transaction for a
commit. At block 903, processing logic identifies one or more
other processes (e.g., enlisted processes) in the cluster that
own the transaction data pertaining to the transaction opera-
tions for the XA transaction. Processing logic can check the
local transaction context to determine which keys are associ-
ated with the transaction and use mapping data, a consistent
hashing algorithm, and the keys to determine which enlisted
processes to send a prepare message to. At block 905, pro-
cessing logic sends a prepare transaction request to the one or
more enlisted processes. The enlisted processes receive the
prepare transaction request and attempt to acquire a lock on
the corresponding transaction data. At block 907, processing
logic determines whether the locks are successfully acquired.
Processing logic can receive a status message from each of
the enlisted processes. If at least one lock is not acquired,
(block 907) processing logic sends a message to the transac-
tion manager indicating a failed prepare operation. Ifall of the
locks are acquired (block 907), processing logic receives the
current version value associated with the locked transaction
data from the enlisted processes at block 909.

At block 911, for each locked transaction data, processing
logic compares the current version value to the version value
that is represented in the local transaction context to deter-
mine if there is a match. If there is at least one comparison that
does not match (block 911), processing logic sends a message
to the transaction manager indicating a failed prepare opera-
tion at block 913. If all of the comparisons result in a match
(block 911), processing logic sends a message to the transac-
tion manager indicating a successful prepare operation and
that the transaction is ready for a commit at block 915. At
block 917, processing logic receives a request from the trans-
action manager to commit the prepared transaction
operation(s). At block 919, processing logic checks the local
transaction context to determine which keys are associated
with the transaction and sends a commit message via network
calls over the network to all of the enlisted processes for the
transaction to perform a commit operation. The commit mes-
sage can include a request for the enlisted process to incre-
ment the version value for the corresponding transaction data.
The enlisted process lock module on the enlisted process then
releases the locks for the corresponding transaction data and
increments the version value for the corresponding transac-
tion data for the transaction. The enlisted process lock module
can send a message to processing logic indicating whether the
commit operation was successful. In one embodiment, at
block 921, processing logic removes the local copy of the
remote transaction data form the local transaction context in

US 9,110,940 B2

17

response to receiving a status message from the enlisted pro-
cess lock module on the enlisted process indicating that the
commit was successful.

FIG. 10 is a flow diagram of an embodiment of a method
1000 of an enlisted process preparing and committing opera-
tions of a transaction. Method 1000 can be performed by
processing logic that can comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (e.g., instructions run on a processing device), or a
combination thereof. In one embodiment, method 1000 is
performed by an enlisted process 123B,C executing in a
machine 105,107 of FIG. 1.

At block 1001, processing logic receives a prepare trans-
action request from a transaction originator process to pre-
pare transaction operations of an XA transaction for a com-
mit. The prepare transaction request includes key and a new
value for the key. At block 1003, processing logic attempts to
acquire a lock for the key and its current value. If a lock is not
acquired (block 1003), for example, because another transac-
tion has already obtained a lock on the key and the current
value, processing logic sends a message to the transaction
originator process indicating a failed prepare operation at
block 1005. If a lock is acquired (block 1003), processing
logic updates the current value for a key in the local transac-
tion context of the enlisted process based on the key and new
value received in the request at block 1007. At block 1009,
processing logic sends a notification to the transaction origi-
nator process indicating a lock has been acquired. Processing
logic can include the current version value that is assigned to
the key in the notification. At block 1011, processing logic
receives a request from the transaction originator process to
commit the prepared transaction operations. The commit
transaction request can include a request to increment the
current version value assigned to the key. At block 1013,
processing logic releases the lock and increments the version
value in response to the commit transaction request. In one
embodiment, processing logic sends a message to the trans-
action originator process indicating a successful prepare
operation at block 1015.

FIG. 11 illustrates a representation of a machine in the
exemplary form of a computer system 1100 within which a
set of instructions, for causing the machine to perform any
one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a LAN, an
intranet, an extranet, and/or the Internet. The machine may
operate in the capacity of a server or a client machine in
client-server network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment.

The machine may be a personal computer (PC), atablet PC,
a set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, a switch or bridge, or any machine capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.

The exemplary computer system 1100 includes a process-
ing device 1102, a main memory 1104 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM) or
DRAM (RDRAM), etc.), a static memory 1106 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
data storage device 1118, which communicate with each
other via a bus 1130.

10

15

20

25

30

35

40

45

50

55

60

65

18

Processing device 1102 represents one or more general-
purpose processing devices such as a microprocessor, a cen-
tral processing unit, or the like. More particularly, the pro-
cessing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 1102 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device 1102 is configured to
execute instructions 1122 for performing the operations and
steps discussed herein.

The computer system 1100 may further include a network
interface device 1108 connected (e.g., networked) to network
1120. The computer system 1100 also may include a video
display unit 1110 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1112
(e.g., a keyboard), a cursor control device 1114 (e.g., a
mouse), and a signal generation device 1116 (e.g., a speaker).

The data storage device 1118 may include a machine-
readable storage medium 1128 (also known as a computer-
readable medium) on which is stored one or more sets of
instructions or software 1122 embodying any one or more of
the methodologies or functions described herein. The instruc-
tions 1122 may also reside, completely or at least partially,
within the main memory 1104 and/or within the processing
device 1102 during execution thereof by the computer system
1100, the main memory 1104 and the processing device 1102
also constituting machine-readable storage media.

In one embodiment, the instructions 1122 include instruc-
tions for transaction originator process modules and enlisted
process modules (e.g., module 201, 203, 205, 207 of FIG. 2,
modules 401, 403, 405, 407 of FIG. 4) and/or a software
library containing methods that call modules in a transaction
originator process and modules in an enlisted process. While
the machine-readable storage medium 1128 is shown in an
exemplary embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable storage medium” shall also be taken to
include any medium that is capable of storing or encoding a
set of instructions for execution by the machine and that cause
the machine to perform any one or more of the methodologies
of'the present invention. The term “machine-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, optical media and magnetic
media.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals capable of being stored, combined,
compared, and otherwise manipulated. It has proven conve-
nient at times, principally for reasons of common usage, to

US 9,110,940 B2

19

refer to these signals as bits, values, elements, symbols, char-
acters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving” or “identifying” or “performing” or “determin-
ing” or “sending” or “comparing” or “storing” or “locating”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the intended purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the method. The structure for a variety of these systems
will appear as set forth in the description below. In addition,
the present invention is not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of the invention as described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing information in a form readable by a machine
(e.g., a computer). For example, a machine-readable (e.g.,
computer-readable) medium includes a machine (e.g., a com-
puter) readable storage medium such as a read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of embodiments of the invention as
set forth in the following claims. The specification and draw-
ings are, accordingly, to be regarded in an illustrative sense
rather than a restrictive sense.

What is claimed is:

1. A method comprising:

receiving, by a first process executing in a computer system

in a data grid, a request to perform at least one transac-
tion operation of a transaction in view of remote trans-

20

25

30

40

45

50

55

60

65

20

action data owned by at least one other process in the
data grid, wherein the at least one other process has a
capability to perform a prepare operation for the trans-
action;
identifying, by the first process, a local copy of the remote
transaction data in a local data structure;
performing, by a processing device executing the first pro-
cess in the computer system in the data grid, within the
same transaction the at least one transaction operation
using the local copy of the remote transaction data with-
out acquiring a lock on the remote transaction data; and
acquiring, by the processing device executing the first pro-
cess, within the same transaction the lock on the remote
transaction data subsequent to said performing the at
least one transaction operation using the local copy.
2. The method of claim 1, further comprising:
receiving, by the first process, a request to prepare the at
least one transaction operation for a commit;
determining, by the first process, for each local copy of
remote transaction data whether the corresponding at
least one other process obtains a lock of the correspond-
ing remote transaction data in response to the prepare
request;
determining, by the first process, for each local copy of
remote transaction data whether a version value associ-
ated with the local copy matches a current version value
being maintained remotely at the corresponding at least
one other process in response to determining locks are
obtained, and sending a message indicating a failed pre-
pare in response to determining locks are not obtained;
and
sending a ready to prepare message in response to deter-
mining there is a match for each local copy of the remote
transaction data, and sending a message indicating a
failed prepare in response to determining there is not a
match for at least one local copy of the remote transac-
tion data.
3. The method of claim 2, further comprising:
receiving, by the first process, a request to commit the at
least one transaction operation in response to sending a
ready to prepare message; and
sending a message to the at least one other process to
increment the current version value being maintained
remotely at the at least one other process.
4. The method of claim 2, wherein determining whether the
version values match comprises:
sending a network call to the at least one other process to
request the current version value;
receiving the current version value; and
comparing the current version value to the version value
represented in a local data store.
5. The method of claim 1, wherein identifying the local
copy comprises:
sending a network call to the at least one other process to
request a copy of the remote transaction data being man-
aged by at least one other process;
receiving the copy of the remote transaction data from the
at least one other process; and
storing the copy of the remote transaction data in the local
data structure.
6. The method of claim 1, wherein identifying the local
copy comprises:
locating a key in the local data structure that matches a key
in the request; and
locating a value in the local data structure corresponding to
the key.

US 9,110,940 B2

21

7. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
device, cause the processing device to:

provide, by a first process executing in the processing

device in a data grid, a copy of transaction data owned by
the first process to a second process, the copy of trans-
action data of the first process being associated with at
least one transaction operation of a transaction, wherein
the first process has an ability to prepare the transaction
data for a commit operation;

acquire, by the processing device executing the first pro-

cess in the data grid, within the same transaction a lock
on data of the first process, wherein the first process,
earlier within the same transaction, did not acquire the
lock;

receive, by the first process, a request from the second

process to commit the at least one transaction operation
associated with the copy of the transaction data of the
first process; and

increment, by the first process, a version value associated

with the copy of the transaction data of the first process.

8. The non-transitory computer-readable storage medium
of claim 7, wherein to provide a copy further comprises:

receive a network call from the second process to provide

a current version value of the transaction data; and
provide a representation of the current version value to the
second process.

9. The non-transitory computer-readable storage medium
of claim 8, wherein to provide the representation of the cur-
rent version value comprises:

provide a location of the version value associated with the

copy of the transaction data.

10. The non-transitory computer-readable storage medium
of claim 8, wherein to provide the representation of the cur-
rent version value comprises:

provide an actual version value associated with the copy of

the transaction data.

11. The non-transitory computer-readable storage medium
of claim 7, wherein to receive the request from the second
process to commit comprises:

receive a request to prepare transaction operations of a

transaction for a commit;

acquire a lock on data corresponding to a key related to a

transaction operation of the transaction; and

send a message indicating a lock has been acquired.

12. The non-transitory computer-readable storage medium
of claim 7, wherein to increment the version value further
comprises:

release a lock on data corresponding to a key related to a

transaction operation of the transaction.

13. The non-transitory computer-readable storage medium
of claim 7, the processing device further to:

store version data corresponding to at least one value cor-

responding to at least one key related to a transaction
operation of the transaction, wherein the version data
comprises at least one key and a version value corre-
sponding to the at least one key.

14. The non-transitory computer-readable storage medium
of claim 13, wherein when to increment the version value, the
processing device to:

add a new version value for a key to the stored version data.

15. A system comprising:

a memory; and

a processing device in a data grid, the processing device

operatively coupled to the memory and to execute a first
process to:

10

30

35

40

45

22

receive a request to perform at least one transaction
operation of a transaction in view of remote transac-
tion data owned by at least one other process in the
data grid, wherein the at least one other process has a
capability to perform a prepare operation for the
transaction;
identify a local copy of the remote transaction data in a
local data structure;
perform within the same transaction the at least one
transaction operation using the local copy of the
remote transaction data without acquiring a lock on
the remote transaction data; and
acquire within the same transaction the lock on the
remote transaction data subsequent to said perfor-
mance of the at least one transaction operation using
the local copy.
16. The system of claim 15, wherein the processing device
is further to:
receive a request to prepare the at least one transaction
operation for a commit;
determine for each local copy of remote transaction data
whether the corresponding at least one other process
obtains a lock of the corresponding remote transaction
data in response to the prepare request;
determine for each local copy of remote transaction data
whether a version value associated with the local copy
matches a current version value being maintained
remotely at the corresponding at least one other process
in response to determining locks are obtained, and send
a message indicating a failed prepare in response to
determining locks are not obtained; and
send a ready to prepare message in response to determining
there is a match for each local copy of the remote trans-
action data, and send a message indicating a failed pre-
pare in response to determining there is not a match for
at least one local copy of the remote transaction data.
17. The system of claim 16, wherein the processing device
is further to:
receive a request to commit the at least one transaction
operation in response to sending a ready to prepare mes-
sage; and
send a message to the at least one other process to incre-
ment the current version value being maintained
remotely at the at least one other process.
18. The system of claim 16, wherein to determine whether
the version values match the processing device is further to:
send a network call to the at least one other process to
request the current version value;
receive the current version value; and
compare the current version value to the version value
represented in a local data store.
19. The system of claim 15, wherein to identify the local
copy the processing device is further to:
send a network call to the at least one other process to
request a copy of the remote transaction data being man-
aged by at least one other process;
receive the copy of the remote transaction data from the
at least one other process; and
store the copy of the remote transaction data in the local
data structure.
20. The system of claim 15, wherein to identify the local
copy the processing device is further to:
locate a key in the local data structure that matches a key in
the request; and
locate a value in the local data structure corresponding to
the key.

